Status of Ecological Risk Assessment in Texas: On-Line Tools for Project Planning, **Assessment and Decision** Making

Margaret Roy Pastor, Behling & Wheeler, LLC

Where it all began

- human health and the environment
 - USEPA 1992. Framework for Ecological Risk Assessment (updated in 1998)
 - USEPA 1993. Wildlife Exposure Factors Handbook
 - USEPA 1997. Ecological Risk Assessment Guidance for Superfund: Process for designing and conducting ecological risk assessments.

Wildlife Exposures: Red-tailed hawk

- Body weight (g)
- Metabolic rate (kcal/kg-day)
- Food ingestion rate (g/g-day)
- Water ingestion rate (g/g-day)
- Inhalation rate (m³/day)
- Surface area (cm²)
- Dietary composition by season

Source: EPA 1993

- Territory size (ha)
- Population density

- Clutch size
- Clutches/year
- Growth rate by weeks
- Age at fledging (days)
- Number fledge per active nest
- Number fledge per successful nest
- Age of sexual maturity (yrs)
- Annual mortality rates
- Longevity

Hazard Quotient Analysis

$$Dose_{oral} = \frac{\left[(IR_{food} \times C_{food}) + (IR_{water} \times C_{water}) + (IR_{soil} \times C_{soil}) + (IR_{sed} \times C_{sed})\right]}{BW}$$

One

chemical at a

time

 $\frac{Exposure}{TRV}$

HQ

Dose

= TRV

- Mortality
- Reproduction
- Developmental

Environmental Vogue

- Emerging Contaminants
 - 1,4-Dioxane
 - PFOS/PFOA
- Endocrine disruptors
 - Phthalates
 - BPA

Endocrine Disruptors

Early studies of alligators led biologists to realize that something in the environment was affecting their reproduction. Juvenile female alligators had malformed ovaries, while males had lower than average testosterone levels and a small penis. Researchers have discovered that the changes were caused by environmental contaminants, which were acting as endocrine disruptors (Science News – January 5, 2014).

- Organochlorine pesticides (DDT) PCBs
- Synthetic estrogen

How did I get here? What am I doing with my life?

Ecological Risk Assessment

- Conducting Ecological Risk Assessments at Remediation Sites in Texas (ERAG) (RG-263)
- Screening Level Benchmarks (RG-263B)

- PCL Database for Wildlife
 - o Sediment
 - \circ Soil
 - o Based on the 7 major habitats in Texas
 - Minor Habitat (aquatic and terrestrial)
- All released in January 2017

ERAG and Benchmark Updates

- ERAG began in the 1990s workgroup
- Released in 2001, updates in 2006 and 2014
- ERAG 2017 reorganized around the 10 required elements
- Updated the science
- Accessible (e-reader)
- Process did not change!

- Benchmarks now Excel-based
- Acute SW values added
- Sediment second effects and benthic PCLs listed
- Radionuclide screening values added
- TCEQ working to verify LC₅₀ based values
- Planned updates

TCEQ Web Pages

www.tceq.texas.gov/remediation/eco/eco.html

- Ecological Risk Resource page
- ERAG, benchmarks, link to Database
- TRRP-15eco (Representative Concentrations)
- TRRP-24 (Determining PCLs for SW and Sed) (don't forget Surface Water Program)

www.tceq.texas.gov/remediation/trrp/guidance

Guidance and Forms

PCL Database

- Calculates Sediment and Soil Wildlife PCLs
- Birds, Mammals, Reptiles and Amphibians
- 7 Major habitats plus Minor Habitat
- Can incorporate home range and seasonality factors
- Modify uptake factors or TRVs
- Export to Excel
- Resource for:
 - Species information
 - TRVs
 - Uptake factors (e.g., soil to earthworm, soil to arthropod)

PCL Database

pcl.wtamu.edu/pcl/login.jsp

- Guest users not allowed to export
- Register Now!

Version: PCL1.8

Protective Concentration Levels Calculator

L Calculator	Chemicals	Species	Habitat	User Maintenance	e Contact Us			C. M. S.	A STATE AND
Step 1: Selec	t desired habi	itat or selec	t from the	species list. Ste	ep 2: Select either the chemical name or CA	IS.			
O Habita	t O Specie	25		c	hemical: choose by name or CAS				Step 3 Click "Next" to compute PCLs for Growth, Reproduction and Mortality
					hoose Chemical by Name		Choose Chemical by	CAS	
				1, 1, 1, 1, 1, 1,	,1,2,2-TETRACHLOROETHANE ,1-DICHLOROETHANE ,2,4-TRICHLOROBENZENE ,2-DICHLOROBENZENE ,2-DICHLOROETHANE	~	014797-73-0 100-41-4 100-42-5 106-44-5 106-46-7	~	Next

CAS	Chemical Name	<u>1</u>	
<u>99-35-4</u>	1,3,5-TRINITROBENZENE (TNB)		F
<u>106-46-7</u>	1,4-DICHLOROBENZENE		-
<u>118-96-7</u>	2,4,6-TRINITROTOLUENE (TNT)		
<u>121-14-2</u>	2,4-DINITROTOLUENE		CAS
<u>35572-78-2</u>	2-AMINO-4,6-DINITROTOLUENE		Texa belov
<u>19406-51-0</u>	4-AMINO-2,6-DINITROTOLUENE (4-AM-DNT)		Envi
<u>67-64-1</u>	ACETONE		
<u>309-00-2</u>	ALDRIN		Arse
<u>84-65-1</u>	ANTHRAQUINONE		comp arsen
<u>7440-36-0</u>	ANTIMONY		Arou
<u>12672-29-6</u>	AROCLOR 1248		some
<u>11097-69-1</u>	AROCLOR 1254		wood
<u>11096-82-5</u>	AROCLOR 1260	6.3	0.000014
7440-38-2	ARSENIC	0.68	0.15
22541-54-4	ARSENIC (AS ARSENIC III)	0	0.15
<u>7440-39-3</u>	BARIUM	0	16
<u>71-43-2</u>	BENZENE	1.993	0.13
7440-41-7	BERYLLIUM	0.57	0.0053
<u>92-52-4</u>	BIPHENYL, 1-1	3.76	0.014
117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE (DEHP)	8.39	0.3

FATE AND TRANSPORT/TOXICOLOGICAL PROFILE FOR ARSENIC

CASRN: 7440-38-2

Texas median soil background concentration is 5.9 mg/kg (TCEQ 2009). If PCL for soil is below 5.9 mg/kg, default to this value.

Environmental Fate & Exposure:

Environmental Fate/Exposure Summary:

Arsenic is the 20th most abundant element in the earth's crust. It occurs most often as a compound with sulfide in a variety of complex minerals. Other important natural sources of arsenic in the environment are from volcanic eruptions. From the mid-19th century to 1940s, inorganic arsenic compounds were the dominant pesticides available to farmers and fruit growers. Around the 1960s, the use of inorganic arsenic compounds in agriculture disappeared. However, some arsenic pesticides are still used today. The production and use of arsenic compounds as wood preservatives (e.g., chrome copper arsenate) and pesticides (e.g., cacodylic acid) will result

	6.3	0.000014	0.168	0.28	0.149	0.19	60.6	4.67	TRRP,2017	
	0.68	0.15	0.0375	0.224	0.0703	0.0025	0.226	0.127	TRRP,2017	
	0	0.15	0.0375	0.224	0.0703	0.0025	0.226	0.127	TRRP,2017	
	0	16	0.156	0.091	0.031	0.0566	0.28	2.8	TRRP,2017	
	1.993	0.13	1.36	5.1	2.55	0.1	0.1	0.1	TRRP,2017	
	0.57	0.0053	0.208	0.045	0.0211	0.0408	0.125	0.125	TRRP,2017	
	3.76	0.014	1.8	2.28	1.14	1.46	0.958	0.129	TRRP,2017	~
E (DEHP)	8.39	0.3	0.07	0.67	0.335	0.1	15.3	7.35	TRRP.2017	
										7

<u>Chemicals</u>	List Add/Edit Chemical Add/Edit Concentrations			Defaul	t Bioaccumul	ation Factor	s (BAFs) for	Phenol			
<u>CAS</u>				Soil-to- Justific with lov Log Ka	plant: 1.36 ation: No da w Log K _{ow} va	ta available; lues (<2.8). I the applicabil	value is the g The EPA (200 ity domain of	eometric me)7) Figure 5E f the compou	an of soil-to 3 equation w	-plant BAFs for orga vas not used because ch the model was	anics the
22967-92-6				develop	oed (2.8 - 8).			1			
<u>7439-98-7</u>	MOLYBDENUM			Soil-to- Justific (1998) (2016).	earthworm: ation: No en regression for	7.41 pirical soil-to earthworms	o-earthworm as per EPA (2	BAFs were f 2007) using l	ound; BAF Log K _{ow} /Lo	calculated using Jag g K_{oc} values from T	er CEQ
<u>110-54-3</u>	N-HEXANE			Soll-to- Justific	arthropod: 2 ation: Due to)./1) the lack of e	mpirical BAI	Fs, the soil-to	o-earthworm	BAF was multiplie	d by
<u>91-20-3</u>	NAPHTHALENE			an earth	nworm-to-arth	ropod attenu	ation factor o	f 0.5 (geome	tric mean of	f values for semi-vol	atile
<u>7440-02-0</u>	NICKEL			Soil-to- Justific organic	mammal: 0. ation: No en compound th	l pirical data v at is not halo	vas found in t genated and e	he literature;	phenol is a e rapidly m	semi-volatile to vol etabolized in small	atile
<u>98-95-3</u>	NITROBENZENE			mamma	als. The geom	etric mean of	soil-to-mam	mal BAFs fo	r organics (1.46 was not used si	nce
29082-74-4	OCTACHLOROSTYRENE			this val dioxins	and furans, a	ased on data nd dieldrin) v	for chlorinate which are poo	ed organic co rly metaboli	mpounds (e zed.	e.g. DDT and metabo	olites,
106-44-5	P-CRESOL			Sedime	ent-to-benthi	c invertebrat	tes: 1.19	t in the liter	ture for also		
<u>87-86-5</u>	PENTACHLOROPHENOL			similar	surrogate con	ipifical data c ipound. Valu	e is the geom	etric mean o	f BAFs for 1	nunitions & explosi	ves;
014797-73-0	PERCHLORATE			even th	ough phenoli vr (e.g. Log K	s not a munit	ion or explos &F compoun	ive compounds (e.g. 24)	d, it is simil 6-TNT HM	ar in structure and X RDX) The geom	etric
<u>108-95-2</u>	PHENOL	9 50 v 11 00	in (mean o	fRAFe for ce	mi_volatile or	manic compo	unde wae no	t used hecan	ice this dataset is has	ed
7723-14-0	PHOSPHORUS, TOTAL (AS P)	3.08	0	0.129	0.301	0.0753	0.0408	0.171	0.3	TRRP,2017	
1336-36-3(D)	POLYCHLORINATED BIPHENYLS (PCBs), DIOXIN-LIKE (AS 2,3,7,8-TCDD TEQs)	6.3	0.000014	0.168	0.28	0.149	0.19	56	4.67	TRRP,2017	
<u>1336-36-3</u>	POLYCHLORINATED BIPHENYLS (PCBs), TOTAL	6.3	0.000014	0.168	0.28	0.149	0.19	60.6	4.67	TRRP,2017	
130498-29-2	POLYCYCLIC AROMATIC HYDROCARBONS, TOTAL	0	0.0338	2.22	3.62	1.81	0	0.197	2.32	NA	
130498-29-2(HMW)	POLYCYCLIC AROMATIC HYDROCARBONS-HIGH MOLECULAR WEIGHT	0	0.00996	0.342	1.77	0.885	0	0.0644	2.36	NA	
130498-29-2(LMW)	POLYCYCLIC AROMATIC HYDROCARBONS-LOW MOLECULAR WEIGHT	0	0.0542	4.57	5.93	2.97	0	0.431	2.25	NA	
<u>7757-79-1</u>	POTASSIUM NITRATE	-0.79	0	0.129	0.301	0.0753	0.0408	0.171	0.3	SYRACUSE RESEARCH CORPORATION	~

>

COLUMN A DESCRIPTION OF TAXABLE PARTY.

<

Species List Add/Edit Species Surrogate Assignment

<

			Body	Trophic		29.0 0.00		
Species Name	Class Name	Habitats	Weight	Level]	Factors	Age/Sex	Mean
BARRED TIGER SALAMANDER (TR)	AMPHIBIAN		0.054	4	-	Body	AM	291
CENTRAL NEWT (TR)	AMPHIBIAN		0.0026	3		Weight	AF	305
EOPARD FROG (AQ)	AMPHIBIAN	_	0.1	4		(g)	(n=129)	
WOODHOUSE TOAD (TR)	AMPHIBIAN		0.056	3				442
AMERICAN KESTREL (TR)	BIRD		0.116	4			(n=37)	490
AMERICAN ROBIN (TR)	BIRD		0.0773	3		Home Range	AM, AF	741 (31
AMERICAN WIGEON (AQ)	BIRD	6	0.755	2		(acres)	AM, AF	
AMERICAN WOODCOCK (TR)	BIRD		0.169	3				
BALD EAGLE (AQ)	BIRD	6	3.75	3			NR	618 (25
BARN OWL (TR)	BIRD	6	0.466	4				
BARN SWALLOW (TR)	BIRD	6	0.016	3		Food		0.0858
BELTED KINGFISHER (AQ)	BIRD	6	0.148	4		Rate		
BEWICK S WREN (TR)	BIRD	6	0.01	3		(kg/kg-d)		0.107
BLACK CAPPED VIREO (TR)	BIRD		0.009	3	0.282	0.00282	0.279	1.0
BLACK CROWNED NIGHT HERON (AQ)	BIRD	6	0.87	4	0.08675404	0.005379	0.061775	6.0
BOBWHITE QUAIL (TR)	BIRD		0.18	3	0.0723	0.00672	0.115	9.3
BURROWING OWL (TR)	BIRD	6	0.15	4	0.123154	0.006158	0.110342	5.0
CANADA GOOSE (AQ)	BIRD	6	3.0	2	0.051230367	0.004201	0.041058	8.2
COMMON YELLOW THROAT (TR)	BIRD		0.01065	3	0.26873586	0.005375	0.264135	2.0

<u>Barn Owl</u> Tyto alba

1 201

Factors	Age/Sex	Mean		Range	•	Locati	on	Referen	ce		
Body	AM	291		Unkno	wn	Britain		Newton	et al.		
Weight	AF	305		Unkno	wn			$(1997)^1$			
(g)	(n=129)										
~	AM	442		382-58	30	NR		Dunning	; (198	34)	,
	AF	490		299-58	30			Sample	and S	Sute	er
	(n=37)							(1994)			
Home	AM, AF	741 (3 k	m^2)			Southe	m	Bond et	al. (2	00	4)
Range		1853 (7.	5 km^2			Englan	d				
(acres)	AM, AF			1235-2	2471 (5-	Nether	ands	de Bruij	n (19	84))
				10 km	²)						
	NR	618 (250) ha)			NR		Johnsgar	rd (19	988	3),
								Sample	and S	Sute	er
								(1994)			
Food		0.0858 2		0.0687	/-0.103 ²	NR		Johnsgar	rd (19	988	3),
Ingestion								Sample	and S	Sute	er
Rate								(1994)			
(kg/kg-d)		0.107		N/A		Calcula	ated	Nagy (2	001)		
0.00282	0.279	1.0	0.0	0.0	1.0	0.0	0.0	0.0		No. No.	1
										N/X	1
0.005379	0.061775	6.0	0.0	0.0	0.0	0.0	0.5	0.5			
0.00672	0.115	9.3	0.75	0.0	0.25	0.0	0.0	0.0			
0.006158	0.110342	5.0	0.0	0.0	0.8	0.2	0.0	0.0		200	
0.004201	0.041058	8.2	1.0	0.0	0.0	0.0	0.0	0.0			11
0.005375	0.264135	2.0	0.0	0.0	1.0	0.0	0.0	0.0	~	No.	200

-

.

Minor Habitat

• <u>MINOR</u>	• <u>MINOR</u>		Fra an ya fer	Fragmented ecological habitat or isolated island-like areas that cannot easily be categori among the seven major habitats (e.g., an unmaintained grassy area adjacent to a laydow yard or a small, man-made stock pond). Included species are representative of a variety feeding guilds and are useful for generalized PCL analysis.					
AMERICAN ROBIN (TR)	AMERICAN WOODCOCK (TR)	BELTED KINGFISHER (AQ)	BOBWHITE Q	<u>vail (tr)</u>	DEER MOUSE (TR)	DESERT SHREW (TR)			
EASTERN COTTONTAIL (TR)	GREEN HERON (AQ)	LEAST SHREW (TR)	MARSH RICE	<u>rat (aq)</u>	MARSH WREN (AQ)	MOURNING DOVE (TR)			
NINE-BANDED ARMADILLO (TR)	<u>PLAIN-BELLIED WATER SNAKE</u> (AQ)	RACCOON SEMI-AQUATIC (AQ)	RACCOON TE	<u>RRESTRIAL (TR)</u>	<u>RED FOX (TR)</u>	RED-TAILED HAWK (TR)			
<u>SOUTHERN SHORT-TAILED</u> <u>SHREW (TR)</u>	SPOTTED SANDPIPER (AQ)	<u>TEXAS RAT SNAKE (TR)</u>	<u>WHITE FOOTI</u>	<u>ED MOUSE (TR)</u>	<u>YELLOW CROWNED NIGHT</u> <u>HERON (AQ)</u>				

PCL Database

- Agency accepted inputs (body weight, home range)
- Allows the user to know PCLs at the beginning
 - Compare to Human Health PCL
 - Preliminary Critical PCL
- Aid in planning assessment or additional data collection
 - Use PCLs as assessment levels (detection limit check)
 - Tool for defining Affected Property boundary
- Development of memos to exit a process without a SLERA

PCL Database Example

- Facility located next to a wetland
- Conceptual model indicated that there could have been runoff of copper into adjacent wetland
- 2 sediment samples and 2 soil samples collected
- Concentrations ranged from 17 56 mg/kg.
- Is a SLERA the next step?

- PCL Database Freshwater Systems
- Lowest Conservative PCL = 89.37 mg/kg (Common Yellow Throat)
- Benthic PCL = 90.3 mg/kg
- Develop memo with maps
- Present data and CSM
- Show PCLs from Database
- Done!

Habitat: FRESHWA Chemical: COPPER(O Log K _{ow} : -0.57 swqb: 0.00524 m	TER SYSTEMS CAS: 7440-50-8) mg/L	e e e	AF - soil to AF - soil to AF - soil to AF - soil to	plant: earthworm: arthropod: wildlife:	0.124 0.515 0.948 0.2412			BAF - se BAF - se Texas N	ediment to f ediment to b ledian Soil f	ish: benthic inverte Background:	0.38 brate: 0.66 15 (mg/K	1 1 (g)		Legend: Value from Calculated V User Overri Calculated f	Literature Value dden Value from Overridd	en Value(s)
Species	Body Wt.	BAF	Food IR	Water IR	Soil Sed IR	End- point	Literature NOAEL	Literature LOAEL	Literature LD 50	Surrogate Used	Conservative PCL	TRV NOAEL	TRV LOAEL	Average TRV PCL	AUF EF % %	Other EMF
CANADA GOOSE (AQ)	3	0.124	0.05123	0.04106	0.004201	MORT				CHICKEN	3127	33	43.3	3615	100. 100	100
The second state						REPR	A DESCRIPTION			CHICKEN	2198	23.2	29.9	2516		
						GROW	10185 (C) 1			CHICKEN	89.369	23.2	29.9	102.27		
COMMON YELLOW THROAT (TR)	0.01065	0.946	0.26874	0.26414	0.005375	MORT				CHICKEN	127.11	33	43.3	146.95	100. 100	100
						REPR				CHICKEN	89.369	23.2	29.9	102.27		
						GROW				RAT	891	82.5	165	1337		
COTTON MOUSE (TR)	0.043	0.6994	0.12868	0.168	0.0025736	MORT				MOUSE	365	33.8	101	728	100. 100	100
						REPR				MOUSE	982	90.9	136	1226		
						GROW				-						
COTTONMOUTH WATER MOCASSIN (AQ)	0.3177	0.32506	0.007908	0	0.000355	MORT				S - 2				-	100. 100	100
						REPR						-				
						GROW				RAT	9652	82.5	165	14477		
COYOTE (TR)	13	0.2412	0.03175	0.0766	0.000889	MORT				MOUSE	3954	33.8	101	7885	100. 100	100
						REPR				MOUSE	10634	90.9	136	13272		

PCL Database – Work in Progress

Name	Email Address	Phone	Organization	
Subjects				
iments:				

Ecological Risk Assessment - Texas

- Know your site
- Protected Species
- Use the Tier 1 Exclusion Criteria Checklist
- Get the data from habitat areas (TRRP-15eco)

- Understand hot spots; consider surgical removals
- Use statistics (95% UCL)
- Don't forget about Ecological Services Analysis (ESA)

Ecological Risk Assessment - Texas

- TCEQ welcomes input, new data, new ideas
 - Trail Cameras Horned Lizard
- Don't be afraid of site-specific data, but develop a Tier 3 work plan to focus efforts

 Tissue Concentrations
 - Uptake Studies
- Cost/Benefit

- Remember that the industry is young limited data
 One TRV for reptiles lead
 - TRVs for birds chicken
 - TRVs for mammals rat/mouse

Margaret Roy <u>margaret.roy@pbwllc.com</u> 512-913-5142