

Harmful Algal Blooms: Nature, Occurrence and Regulatory Outlook

Karl Mueller

Environmental Manager Refinery Specialties, Inc.

Scope

- Harmful Algal Blooms (HABs) defined
- Algal species of concern and associated toxins
- Factors contributing to HAB development
- Current Recommended Exposure Guidelines
- Recommendations

Four Main Questions

- What are HABs?
- What toxins are associated with HABs?
- Under what conditions do HABs form?
- How can they be controlled?

Harmful Algal Blooms - defined

- An algal bloom is a rapid increase or accumulation in the population of algae in a water system.
 - Often due to human influences, e.g. cultural eutrophication
 - May be due to natural fluctuations
- A Harmful Algal Bloom (HAB) is an algal bloom which results in (or has the potential to result in) adverse impacts to human health and the environment.
- May occur in marine, freshwater, and brackish water environments.

Harmful Algal Blooms - Impacts

Adverse environmental impacts of HABs include:

- 1. Dramatic alterations of water chemistry (pH and DO)
 - Raise pH by removing CO₂ and increasing OH⁻ concentration
 - Supersaturate DO levels in upper water column (near-surface)
 - Reduce DO through cellular respiration and biological degradation
- 2. Reducing light transmission habitat alteration
- 3. Contributing to taste and odor problems (drinking water sources)
 - Geosmin and 2-methylisoborneol (MIB) often associated with HABs
- 4. Other aesthetic effects
 - Water discoloration, interference with recreational activities
- 5. Releasing toxins into water bodies (source and receiving)
 - Cause illness and death via food chain or biomass accumulation (neurotoxins)
 - Cause mechanical damage to freshwater and marine organisms
 - Human health risk through exposure and consumption of contaminated seafood and drinking water

Harmful Algal Blooms – Impacts (cont.)

The adverse impacts of HABs fall into three main categories:

- Ecological Impacts
 - Zooplankton avoidance or death
 - Bioaccumulation
 - Fish kills
 - Losses to bird and mammal populations
- Economic Impacts
 - Increased drinking water treatment costs
 - Loss of recreational revenue
 - Decimation of recreational and commercial fisheries
 - Death of livestock and domestic animals
 - Increased medical expenses
- Human Health and Aesthetic Impacts

HAB-related illnesses

- Examples of documented human illnesses and / or syndromes associated with HABs include:
 - Paralytic Shellfish Poisoning (PSP)
 - Diarrheal Shellfish Poisoning (DSP)
 - Neurotoxic Shellfish Poisoning (NSP)
 - Ciguatera Fishfood Poisoning (CFP)
 - Estuary Associated Syndrome (EAS)
 - Amnesic Shellfish Poisoning (ASP)
 - Cyanobacterial Toxin Poisoning (CTP)

HAB-related illnesses – causal organisms

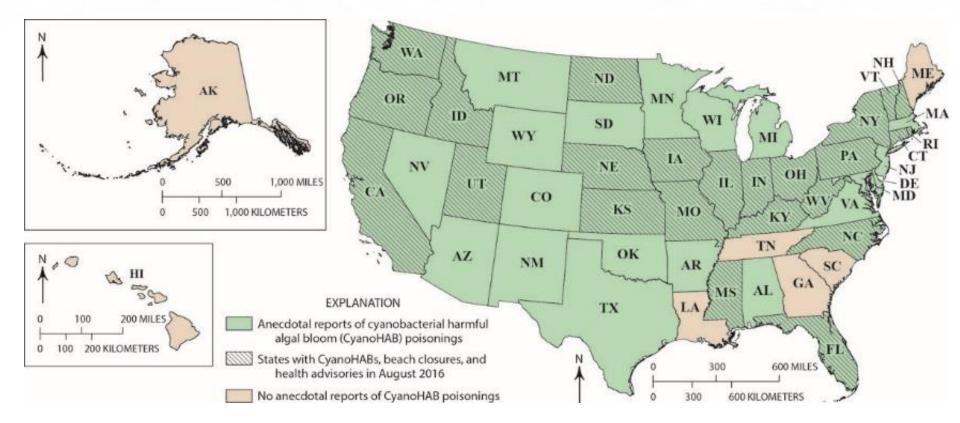
- Paralytic Shellfish Poisoning (PSP)
- Diarrheal Shellfish Poisoning (DSP)
- Neurotoxic Shellfish Poisoning (NSP)
- Ciguatera Fishfood Poisoning (CFP)
- Estuary Associated Syndrome (EAS)
- Amnesic Shellfish Poisoning (ASP)
- Cyanobacterial Toxin Poisoning (CTP)

Dinoflagellate (marine)

HAB-related illnesses – causal organisms

- Paralytic Shellfish Poisoning (PSP)
- Diarrheal Shellfish Poisoning (DSP)
- Neurotoxic Shellfish Poisoning (NSP)
- Ciguatera Fishfood Poisoning (CFP)
- Estuary Associated Syndrome (EAS)
- Amnesic Shellfish Poisoning (ASP) ---> Diatom (marine)
- Cyanobacterial Toxin Poisoning (CTP)

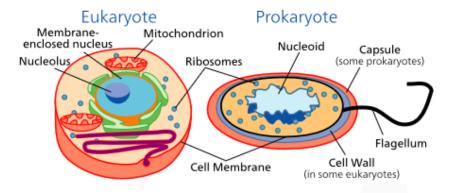
Dinoflagellate (marine)


HAB-related illnesses – causal organisms

- Paralytic Shellfish Poisoning (PSP)
- Diarrheal Shellfish Poisoning (DSP)
- Neurotoxic Shellfish Poisoning (NSP) Dinoflagellate (marine)
- Ciguatera Fishfood Poisoning (CFP)
- Estuary Associated Syndrome (EAS)
- Amnesic Shellfish Poisoning (ASP) ----> Diatom (marine)
- Cyanobacterial Toxin Poisoning (CTP) --> Cyanobacteria (freshwater)
 - Usually the result of drinking contaminated water
 - A sub-acute condition characterized by liver damage (jaundice)
 - May be accompanied by other, often reversible, symptoms
 - Acute cases can result in neurotoxic effects

Source: Mosby's Medical Dictionary, 9th edition. © 2009, Elsevier)

Cyanobacteria – Impacts Distribution (U.S.)

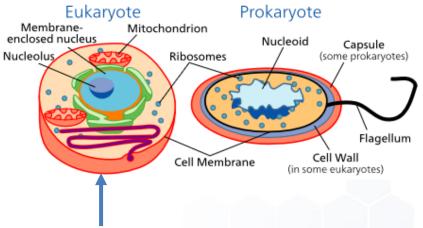


Cyanobacteria - Overview

General features:

- Single-celled organism
 - Unicellular and filamentous species
 - May form colonies or aggregations – phototrophic biofilms or microbial mats
 - Can exist as free-living individuals or in symbiotic relationships, e.g. lichen
 - Found in a variety of ecosystems
- Autotrophic
 - Reduce atmospheric CO₂ to produce carbohydrate (under aerobic conditions)
 - Fix both N_2 and C; produce O_2

Cell type comparison



Cyanobacteria - Overview

General features:

- Single-celled organism
 - Unicellular and filamentous species
 - May form colonies or aggregations – phototrophic biofilms or microbial mats
 - Can exist as free-living individuals or in symbiotic relationships, e.g. lichen
 - Found in a variety of ecosystems
- Autotrophic
 - Reduce atmospheric CO₂ to produce carbohydrate (under aerobic conditions)
 - Fix both N_2 and C; produce O_2

Cell type comparison

- Complex internal structure (organelles)
- Membrane-bound "true" nucleus
- Common metabolic pathways
- Chlorophyll within chloroplasts



Cyanobacteria - Overview

General features:

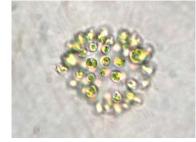

- Single-celled organism
 - Unicellular and filamentous species
 - May form colonies or aggregations – phototrophic biofilms or microbial mats
 - Can exist as free-living individuals or in symbiotic relationships, e.g. lichen
 - Found in a variety of ecosystems
- Autotrophic
 - Reduce atmospheric CO₂ to produce carbohydrate (under aerobic conditions)
 - Fix both N_2 and C; produce O_2

Cell type comparison

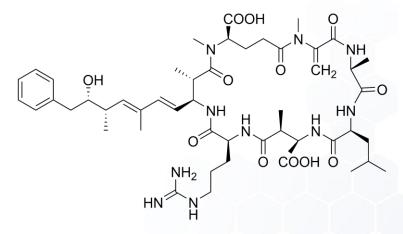
Algal Activity in Aquatic Environments

- Algae exhibit strong diurnal patterns of activity (photosynthetic activity)
- During day, algae migrate upward in water column, DO and pH levels increase
 - Photosynthesis results in O₂ production
 - CO₂ removal from atmosphere and water (results in increased OH⁻ concentration and increased alkalinity)
- During day, pattern is reversed – DO consumed through respiration, CO₂ given off

Algal Species and Cyanotoxins Associated with HABs


Genera	Cyanotoxins	Target Organ
Microcystis, Anabaena, Planktothrix (Oscillatoria), Nostoc, Hapalosiphon, Anabaenopsis, Woronichinia	Microcystins	Liver
Nodularia	Nodularins	Liver
Anabaena, Planktothrix (Oscillatoria), Aphanizomenon, Woronichinia	Anatoxin-a	Synapse
Anabaena	Anatoxin-a(S)	Synapse
Cylindrospermopsis, Aphanizomenon, Umezakia	Cylindrospermopsins	Liver
Lyngbya	Lyngbyatoxin-a	Skin, GI tract
Anabaena, Aphanizomenon, Cylindrospermopsis, Lyngbya	Saxitoxin	Synapse
All	Lipopolysaccharides	Exposed Tissue (irritant)
Lyngbya, Planktothrix (Oscillatoria), Schizothrix	Aplysiatoxins	Skin
All	BMAA	CNS

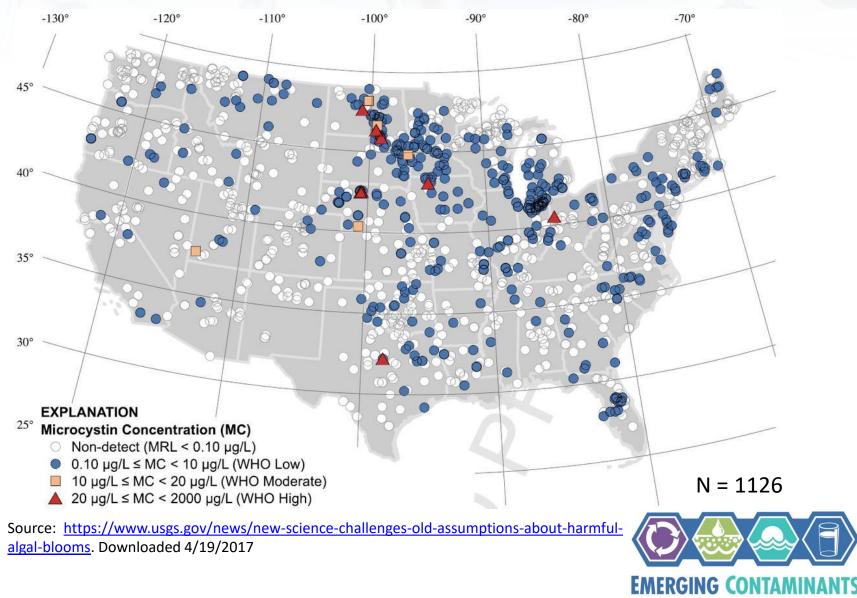
Microcystin/Microcystin-LR


- Named after Microcystis aeruginosa
- Most prevalent and well-known algal toxin – has been intensively studied
- 60 known variants (congeners);
 Microcystin-LR most commonly reported (standard lab method)
- Cyclic peptides as a class represent greatest human health concern
- Hepatotoxin; may be tumor promoter at low doses
- Stable over wide range of temperature and pH, not easily removed by traditional water treatment methods

Kristian Peters http://www.korseby.net/outer/flora/algae/index.html - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9432568

(M. aeruginosa)

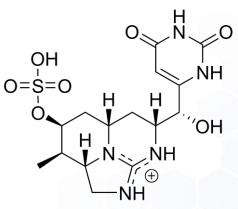
Structure – cyclic peptide



Microcystin-LR

By cacycle - English Wikipedia [1], CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1491847

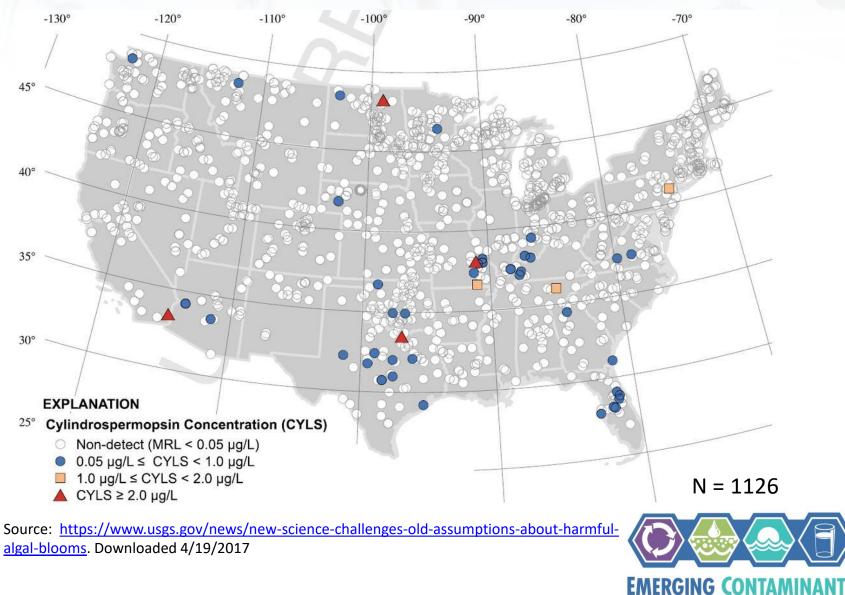
Microcystin Concentrations in U.S. Inland Lakes and Reservoirs (2016)


Cylindrospermopsins (CYN or CYL)

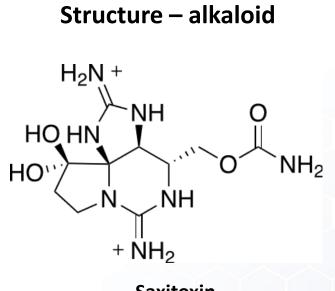
- Named for Cylindrospermopsis raciborskii – a filamentous algae
- Certain Cylindrospermopsis strains also capable of producing anatoxins and saxitoxin
- Implicated in hepatoenteritis outbreak in Palm Island, Australia in 1979
- Typically found in tropical regions but now present in temperate zones, e.g. Great Lakes (South American strain)
- A hepatotoxin and nephrotoxin
- Bioaccumulation potential
- After microcystins, the algal toxins of greatest concern in US

(C. raciborskii)

Structure – alkaloid


Cylindrospermopsin

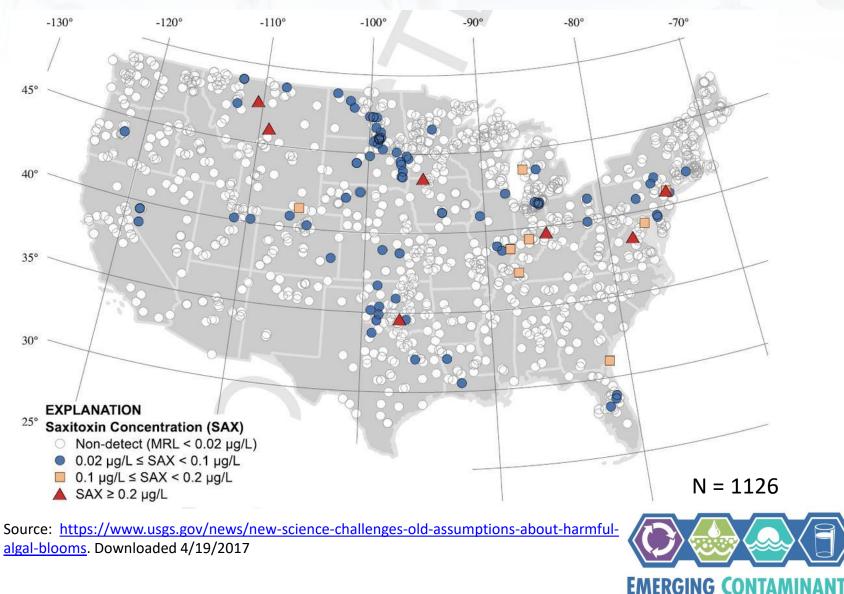
By Cacycle (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or Public domain], via Wikimedia Commons


Photo courtesy http://oceandatacenter.ucsc.edu/PhytoGallery/Freshwater/Cylindrospermopsins.html

Cylindrospermopsin Concentrations in U.S. Inland Lakes and Reservoirs (2016)

Saxitoxin (STX)

- First identified in butter clam (Saxidomus giganteus)
- Produced by some marine dinoflagellates and puffer fish; several strains of algae
- One of most potent natural neurotoxins known
- Cause of Paralytic Shellfish Poisoning (PSP)
- Na-channel blocker disrupts neural response and prevents normal cell function
- Results in flaccid paralysis and can lead to death from respiratory failure
- Originally isolated and described by US military; chemical weapon designation TZ



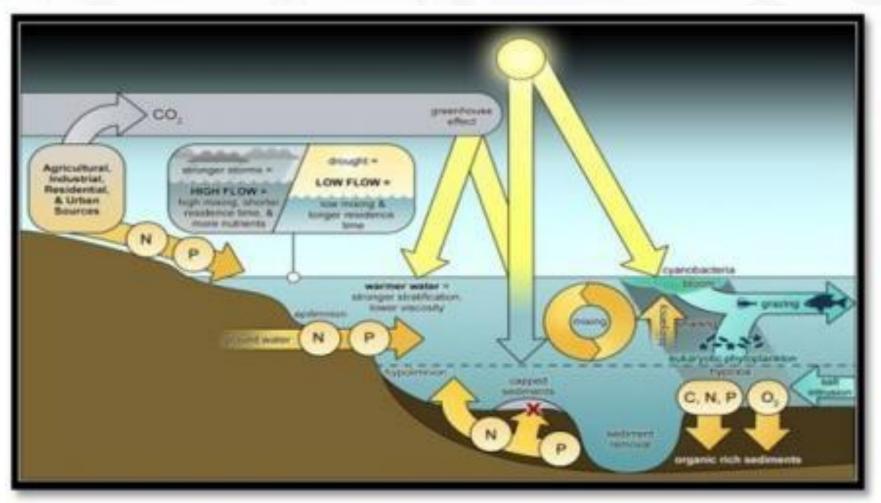
Saxitoxin

By Cacycle (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html) CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or Public domain], via Wikimedia Commons

Saxitoxin Concentrations in U.S. Inland Lakes and Reservoirs (2016)

Role of Nutrients in HAB Formation

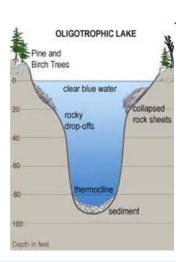
- In natural systems nitrogen, carbon, and phosphorus are three principal nutrients:
 - N present as metabolic waste products (NH₃, urea)
 - N also present as nitrates and nitrites from agricultural runoff (fertilizers, CAFOs, etc.)
 - Cyanobacteria have ability to fix atmospheric N_2
 - P is in shortest supply a limiting nutrient
- Algae will incorporate bioavailable N and P in water column; synthesize C through photosynthesis


- In natural systems nitrogen, carbon, and phosphorus are three principal nutrients:
 - N present as metabolic waste products (NH₃, urea)
 - N also present as nitrates and nitrites from agricultural runoff (fertilizers, CAFOs, etc.)
 - Cyanobacteria have ability to fix atmospheric N_2
 - P is in shortest supply a limiting nutrient
- Algae will incorporate bioavailable N and P in water column; synthesize C through photosynthesis
- Suggests control of N and P critical!

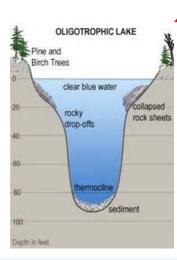
- However....
 - The picture with respect to HAB formation (and the species implicated) is considerably more complex
- While nutrients play a crucial role, other environmental variables are also important, such as
 - 1. Temperature (optima vary by species)
 - 2. Water Chemistry (pH, salinity, etc.)
 - 3. Light (photoperiod and transmissivity)
 - Abiotic sources of turbidity
 - 4. Weather
 - Wind (promotes mixing and overturn)
 - Rainfall events (flushing/nutrient transport)
 - 5. Biotic factors

Factors Influencing HAB Formation

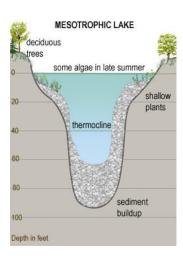
Source: Pearl, H., Hall, N., and Calandrino, E. (2011). "Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change." Science of the Total Environment, Vol. 409, Issue 10, April, 2011, Pages 1739-1745.


- Trophic State Index (TSI) relates presence/absence of nutrients to estimate of biological condition
 - Trophic state = the total weight of biomass in a given water body at the time of measurement
- Carlson Index relates three independent, correlated variables to classify water bodies in terms of algal biomass:
 - 1. Chlorophyll pigments (µg/l)
 - 2. Phosphorus concentration ($\mu g/I$)
 - 3. Secchi depth (m)

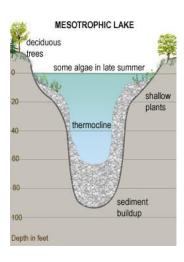
Trophic Index (TI)	Chlorophyll (µg/l)	Ρ (μg/l)	Secchi Depth (m)	Trophic Class
< 30 - 40	0-2.6	0-12	> 8 - 4	Oligotrophic
40 – 50	2.6 – 20	12 – 24	4 – 2	Mesotrophic
50 – 70	20 – 56	24 – 96	2 – 0.5	Eutrophic
70 - 100+	56 – 155+	96 - 384	0.5 - < 0.25	Hypereutrophic


Trophic Index (TI)	Chlorophyll (µg/l)	Ρ (μg/l)	Secchi Depth (m)	Trophic Class
< 30 - 40	0-2.6	0 - 12	> 8 - 4	Oligotrophic
40 – 50	2.6 – 20	12 – 24	4 – 2	Mesotrophic
50 – 70	20 – 56	24 – 96	2 – 0.5	Eutrophic
70 – 100+	56 – 155+	96 – 384	0.5 – < 0.25	Hypereutrophic

- Nutrient poor/low algal biomass
- Low primary productivity
- Relatively little sediment loading
- Almost no turbidity
- DO levels high; support oxygen-sensitive species

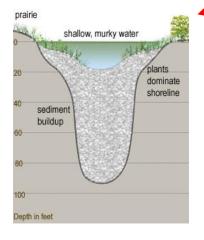

Trophic Index (TI)	Chlorophyll (µg/l)	Ρ (μg/l)	Secchi Depth (m)	Trophic Class
< 30 - 40	0-2.6	0-12	> 8 - 4	Oligotrophic
40 – 50	2.6 – 20	12 – 24	4 – 2	Mesotrophic
50 – 70	20 – 56	24 – 96	2 – 0.5	Eutrophic
70 – 100+	56 – 155+	96 – 384	0.5 – < 0.25	Hypereutrophic

- Nutrient poor/low algal biomass
- Low primary productivity
- Relatively little sediment loading
- Almost no turbidity
- DO levels high; support oxygen-sensitive species
- Low HAB formation potential


Trophic Index (TI)	Chlorophyll (µg/l)	Ρ (μg/l)	Secchi Depth (m)	Trophic Class
< 30 - 40	0-2.6	0-12	> 8 - 4	Oligotrophic
40 – 50	2.6 – 20	12 – 24	4 – 2	Mesotrophic
50 – 70	20 – 56	24 – 96	2 – 0.5	Eutrophic
70 – 100+	56 – 155+	96 - 384	0.5 - < 2.5	Hypereutrophic

- Moderate nutrient/sediment loads
- Good primary productivity; seasonal algae increase
- Higher turbidity
- DO levels high; vary seasonally

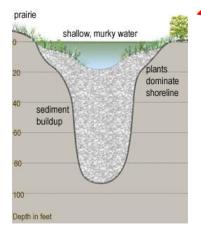
Trophic Index (TI)	Chlorophyll (µg/l)	Ρ (μg/l)	Secchi Depth (m)	Trophic Class
< 30 - 40	0-2.6	0-12	> 8 - 4	Oligotrophic
40 – 50	2.6 – 20	12 – 24	4 – 2	Mesotrophic
50 – 70	20 – 56	24 – 96	2 – 0.5	Eutrophic
70 – 100+	56 – 155+	96 - 384	0.5 - < 2.5	Hypereutrophic



- Moderate nutrient/sediment loads
- Good primary productivity; seasonal algae increase
- Higher turbidity
- DO levels high; vary seasonally
- Moderate HAB formation potential

Trophic Index (TI)	Chlorophyll (µg/l)	Ρ (μg/l)	Secchi Depth (m)	Trophic Class
< 30 - 40	0-2.6	0 - 12	> 8 - 4	Oligotrophic
40 – 50	2.6 – 20	12 – 24	4 – 2	Mesotrophic
50 – 70	20 – 56	24 – 96	2 – 0.5	Eutrophic
70 - 100+	56 – 155+	96 – 384	0.5 - < 2.5	Hypereutrophic

EUTROPHIC LAKE



- High nutrient/sediment loads
- High primary productivity; algal populations year-round
- Much higher turbidity
- DO levels high but may be seasonally low, esp. at depth

Trophic Index (TI)	Chlorophyll (µg/l)	Ρ (μg/l)	Secchi Depth (m)	Trophic Class
< 30 - 40	0-2.6	0 - 12	> 8 - 4	Oligotrophic
40 – 50	2.6 – 20	12 – 24	4 – 2	Mesotrophic
50 – 70	20 – 56	24 – 96	2 – 0.5	Eutrophic
70 - 100+	56 – 155+	96 – 384	0.5 - < 2.5	Hypereutrophic

EUTROPHIC LAKE

- High nutrient/sediment loads
- High primary productivity; algal populations year-round
- Much higher turbidity
- DO levels high but may be seasonally low, esp. at depth
- Significant HAB formation potential

Trophic Index (TI)	Chlorophyll (µg/l)	Ρ (μg/l)	Secchi Depth (m)	Trophic Class
< 30 - 40	0-2.6	0-12	> 8 - 4	Oligotrophic
40 – 50	2.6 – 20	12 – 24	4 – 2	Mesotrophic
50 – 70	20 – 56	24 – 96	2 – 0.5	Eutrophic
70 - 100+	56 – 155+	96 - 384	0.5 - < 2 5	Hypereutrophic

- Extremely high nutrient/sediment loads
- Primary producers abundant other species significantly impacted or absent altogether
- Extremely high turbidity
- DO levels low, pH high

Trophic Index (TI)	Chlorophyll (µg/l)	Ρ (μg/l)	Secchi Depth (m)	Trophic Class
< 30 - 40	0-2.6	0-12	> 8 - 4	Oligotrophic
40 – 50	2.6 – 20	12 – 24	4 – 2	Mesotrophic
50 – 70	20 – 56	24 – 96	2 – 0.5	Eutrophic
70 - 100+	56 – 155+	96 - 384	0.5 - < 2 5	Hypereutrophic

- Extremely high nutrient/sediment loads
- Primary producers abundant other species significantly impacted or absent altogether
- Extremely high turbidity
- DO levels low, pH high
- HAB formation likely!

HAB Events – Three Scenarios

Lake Erie Algal Blooms of 2011 and 2014

- Maumee and Cuyahoga River watersheds feed into Western Basin of Lake Erie
 - Maumee largely agricultural, non-point source runoff
 - Cuyahoga predominantly urban/suburban land use; point and non-point sources
 - Phosphorus is key nutrient
- Heavy rainfall events in Maumee watershed in Summer 2011 and 2014 resulted in high phosphorus levels – peaks coincided with HAB events
- High rainfalls event in urban watershed tend to dilute P; not a major HAB contributor

HAB Events – Three Scenarios

Lake Erie Algal Blooms of 2011 and 2014

- Maumee and Cuyahoga River watersheds feed into Western Basin of Lake Erie
 - Maumee largely agricultural, non-point source runoff
 - Cuyahoga predominantly urban/suburban land use; point and non-point sources
 - Phosphorus is key nutrient
- Heavy rainfall events in Maumee watershed in Summer 2011 and 2014 resulted in high phosphorus levels – peaks coincided with HAB events
- High rainfalls event in urban watershed tend to dilute P; not a major HAB contributor
- HABs an ongoing/recurring problem!

DETECTION // TREATMENT // REGULATION

HAB Events – Three Scenarios (cont.)

Field Remediation Site – Central Texas

- NWIRP McGregor (active 1945 1995)
 - Manufactured munitions and solid rocket motors
 - Perchlorate > 4 ppb identified in surface runoff in 1998 – threat to drinking water source (Lake Belton)
 - Remedial strategy involved passive and active treatment and removal of perchlorate
- Anaerobic WWT system brought on-line in 2002 – fluidized bed reactor (FBR)
- Treated effluent stored in holding ponds prior to batch or continuous discharge
- pH increase (> 9) noted in summer months – correlated to low flows and longer residence times
- Potential discharge permit implications



HAB Events – Three Scenarios (cont.)

Field Remediation Site – Central Texas

- NWIRP McGregor (active 1945 1995)
 - Manufactured munitions and solid rocket motors
 - Perchlorate > 4 ppb identified in surface runoff in 1998 – threat to drinking water source (Lake Belton)
 - Remedial strategy involved passive and active treatment and removal of perchlorate
- Anaerobic WWT system brought on-line in 2002 – fluidized bed reactor (FBR)
- Treated effluent stored in holding ponds prior to batch or continuous discharge
- pH increase (> 9) noted in summer months

 correlated to low flows and longer
 residence times
- Potential discharge permit implications
- No HAB formation but potential existed!

HAB Events – Three Scenarios (cont.)

Industrial WWTP – Texas Gulf Coast

- Industrial WWTP Regional Wastewater Treatment Authority
 - Facility constructed in 1972 to meet new CWA standards
 - Serves industrial customers exclusively (two petrochemical facilities; one terminal facility)
 - Activated sludge system formerly relied on combination of anaerobic, aerobic and facultative ponds
 - System upgraded in 2007 with construction of oxygen aeration basin (OAB) at front-end – 95% of treatment occurs here
- Seasonally adjust pH during summer months using sulfuric acid
- Presence of algae noted in storage basins
- Periodic biomonitoring included in permit
- Failure of biomonitoring test led to identification of Microcystin and triggered Toxicity Reduction Evaluation (TRE)

HAB Events – Three Scenarios

Industrial WWTP – Texas Gulf Coast

- Industrial WWTP Regional Wastewater Treatment Authority
 - Facility constructed in 1972 to meet new CWA standards
 - Serves industrial customers exclusively (two petrochemical facilities; one terminal facility)
 - Activated sludge system formerly relied on combination of anaerobic, aerobic and facultative ponds
 - System upgraded in 2007 with construction of oxygen aeration basin (OAB) at front-end – 95% of treatment occurs here
- Seasonally adjust pH during summer months using sulfuric acid
- Presence of algae noted in storage basins
- Periodic biomonitoring included in permit
- Failure of biomonitoring test led to identification of Microcystin and triggered Toxicity Reduction Evaluation (TRE)
- HAB and cyanotoxins identified!

DETECTION // TREATMENT // REGULATION

Exposure Guidelines for and Regulation of Cyanotoxins

- In 1998, the World Health Organization (WHO) proposed provisional drinking water guideline of 1 μg/l for Microcystin-LR
- WHO subsequently issued recreational contact guidelines for Microcystin-LR:
 - Low Risk (< 10 μg/l)
 - Moderate Risk ($10 20 \mu g/l$)
 - High Risk (> 20 μ g/l)
- No current federally enforceable limits; Health Advisories (HAs) have been issued with recommended exposure limits (state approaches similar)
- Cyanotoxins and cyanobacteria listed on Contaminant Candidate List (CCL) – CCL 1 of 1998, CCL 2 of 2005 and CCL 3 of 2009
- Anatoxin-a, cylindrospermopsin, and microcystin-LR listed on draft CCL 4 (April 2015)

International Guideline Values for Microcystin-LR

Country	Guideline Value	Source
Brazil, China, Czech Republic, Denmark, Finland, France, Germany, Italy, Japan, Korea, Netherlands, Norway, New Zealand, Poland, South Africa, and Spain	1.0 μg/l Microcystin-LR	Based on the WHO Provisional Guideline Value of 1.0 μg/l for drinking water (WHO, 1999; 2003)
Australia	1.3 μg/l Microcystin-LR (toxicity equivalents)	Australian Drinking Water Guidelines 6 (NHMRC, NRMMC, 2011)
Canada	1.5 μg/l Microcystin-LR	Guidelines for Canadian Drinking Water Quality: Supporting Documentation Cyanobacterial Toxins – Microcystin-LR (Health Canada, 2002)

State Guideline Values for Cyanotoxins (Drinking Water)

State	Guideline Value	Source	
Minnesota	0.04 μg/l Microcystin-LR	Minnesota Department of Health (MDH, 2012)	
Oregon	1.0 μg/l Microcystin-LR; 3.0 μg/l Anatoxin-A; 1.0 μg/l Cylindrospermopsin; 3.0 μg/l Saxitoxin	Public Health Advisory Guidelines, Harmful Algae Blooms in Freshwater Bodies (OHA, 2015)	
Ohio	1.0 μg/l Microcystin	Public Water System Harmful Algal Bloom Response Strategy (Ohio EPA, 2014)	

Ohio Guideline Values for Cyanotoxins (Drinking Water and Recreational Contact)

Cyanotoxin	Do Not Drink (children < 6 and sensitive groups)	Do Not Drink (children > 6 and adults)	Do Not Use (Recreational Contact)
Microcystin	0.3 μg/l	1.6 μg/l	20 μg/l
Anatoxin-a	20 µg/l	20 µg/l	300 μg/l
Cylindrospermopsin	0.7 μg/l	3.0 μg/l	20.0 μg/l
Saxitoxin	0.2 μg/l	0.2 μg/l	3.0 μg/l

Summary and Conclusions

- A host of factors influence and control HAB development
- Role of key nutrients is paramount
 - N:P, N:S, N:Si ratios play role
- Understanding overall context also crucial
 - Relevant biotic and abiotic factors
 - Role of biological communities in controlling/mediating HABs
- HAB formation in industrial/remedial site settings
 - Potential to form anywhere water is held or stored prior to discharge
 - Establishing and maintaining good site controls essential
 - Monitoring of nutrient inputs (baseline) and periodically during warm and wet weather months
- Prevention of HAB formation is key!

• Questions?

