

An independent research hub helping people thrive and nature flourish.

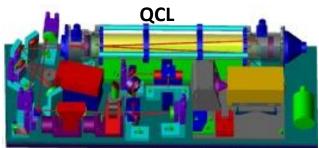
Overview of the Benzene and Other Toxics Exposure (BEE-TEX) Field Study

Eduardo (Jay) Olaguer, Ph.D. Program Director, Air Quality Science Houston Advanced Research Center

March 17, 2016

BEE-TEX Field Study

- The Benzene and other Toxics Exposure (BEE-TEX) Study was a field study of human exposure to and source attribution of the air toxics: benzene, toluene, ethyl benzene and xylenes (BTEX), plus other HAPs (e.g., formaldehyde, 1,3-butadiene).
- The study was conducted in the Houston Ship Channel neighborhoods of Manchester, Galena Park, and Milby Park in February of 2015.
- The study cost about \$1 million and was funded by U.S. Fish & Wildlife, Coastal Impact Assistance Program (CIAP) through Harris County, Texas.


BEE-TEX Methodologies

- Portable cultured human lung cells (UNC)
- Real time monitoring (~1 s TR, <1 ppb LOD) based on three mobile platforms (Aerodyne, HARC, UH)
- Real time data broadcasting (HARC)
- Computer-Aided Tomography (CAT) scans based on Differential Optical Absorption Spectroscopy (DOAS) remote sensing (UCLA)
- Micro-scale 3D Eulerian chemical transport model for real time source attribution and plume reconstruction within ~30 min to 1 hr of CAT-DOAS or mobile lab observations (HARC)

Cultured Human Lung Cells

- UNC deployed *in vitro* technique in which living lung cells were exposed to polluted air delivered across an air-liquid interface.
- Cell toxicity & inflammation measured based on releases of specific proteins and enzymes.
- Genomics testing of exposed lung cells may confirm response to carcinogens present in air.
- Cell responses may indicate exposure to specific classes of pollutants (e.g., aldehydes).

PTR-MS

Real Time Data Broadcasting

HARCMARC Review

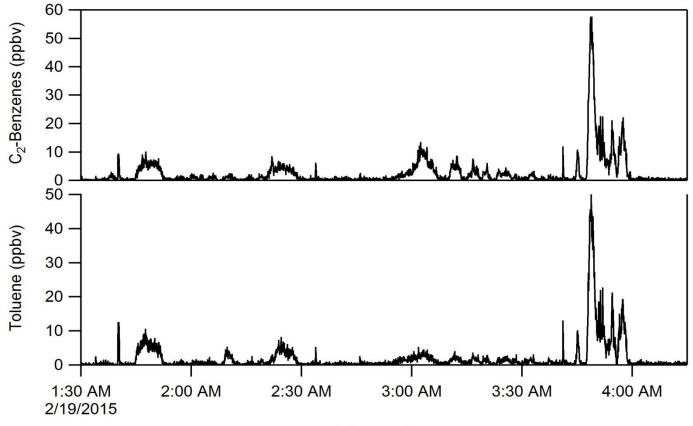
C hterra.harc.edu/test/harcmarc/nov11.html

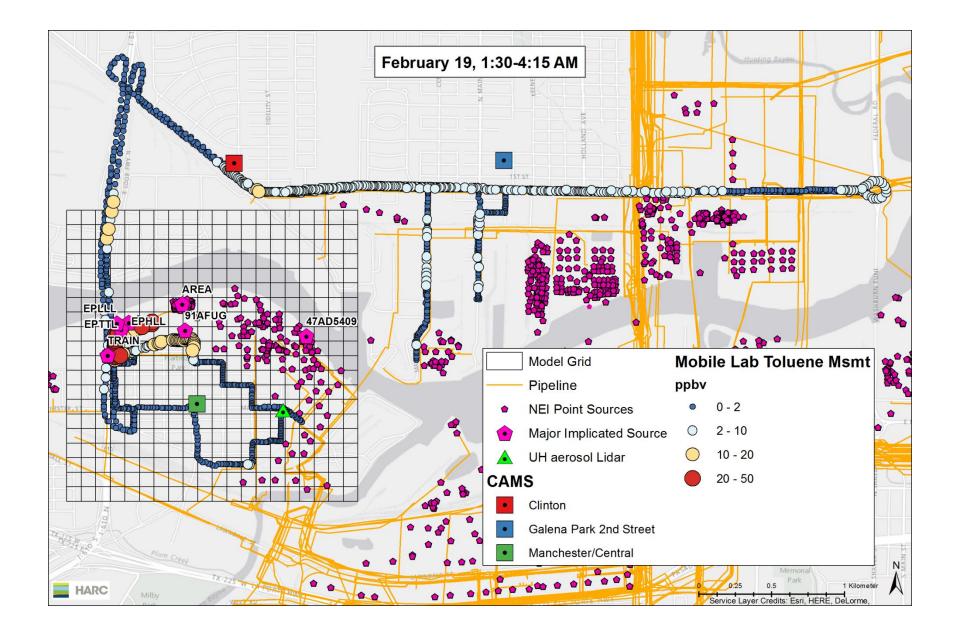
E

M

10

07 C2-Benzenes Time → m/z Calculate wind wind ID stamp ppbv direction speed 14:00:08 107 5219 73.23972 185 7.6 5223 14:00:00 107 1.210394 261 8.7 5227 13:59:53 107 2.467684 206 10.7 5231 13:59:46 107 6.020403 146 4.3 5235 13:59:39 107 10.80705 202 5.4 5239 13:59:33 107 3.527827 193 5.8 5243 13:59:25 107 2.59649 102 9.8 5247 13:59:18 107 5.348308 203 9.4 5251 13:59:11 107 0.6645487108 7.8 5255 13:59:05 107 1.31722 201 4.7 5259 13:58:58 107 4.406221 318 4.9 5263 19 13:58:51 107 4.425846 5 5267 13:58:44 107 23.01223 12 15 5271 13:58:36 107 18.8848 3 10.1 5275 13:58:28 107 18.59078 325 11.6 5279 13:58:20 107 9.116459 152 20.4 5283 13:58:11 107 16.40897 152 24.2 5287 13:58:03 107 8.119941 131 16.3 70 11:40:00 11:56:40 12:13:20 12:30:00 12:46:40 13:03:20 13:20:00 13:36:40 13:53:20 **IAR**

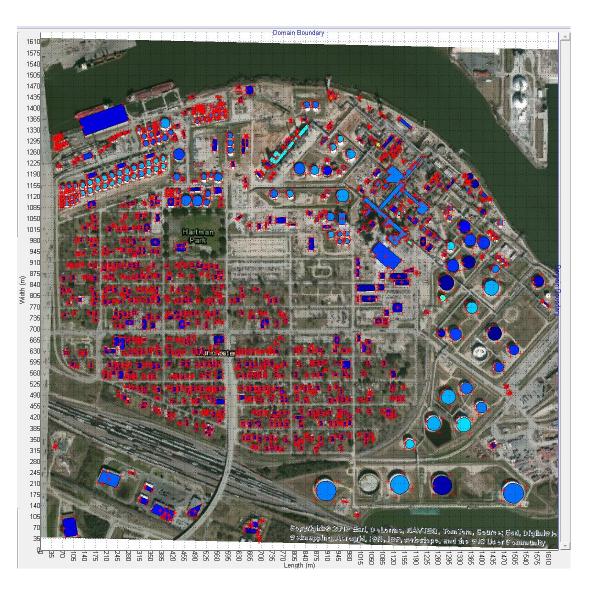

Computer-Aided Tomography


LP-DOAS Measurements on Feb 19 from 4:01:27 – 4:26:20 AM LST

Path ID	Path Length (m)	Toluene (ppb)	m-Xylene (ppb)	p-Xylene (ppb)
M1	770	15.12	4.00	1.83
H4	740	2.53	0.92	0.19
H1	513	20.91	6.89	2.75
M2	1203	3.39	0.33	0.05
H2	526	39.87	11.17	4.74
M3	270	1.42	1.51	0.60
H3	689	11.05	1.95	0.64

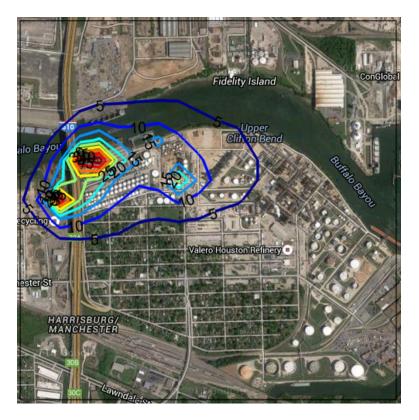
HARC Mobile Lab Measurements on Feb 19 from 1:30 – 4:15 AM LST

Date and Time


HARC 3D Micro-Scale Model

•Neighborhood scale 3D Eulerian air quality model.

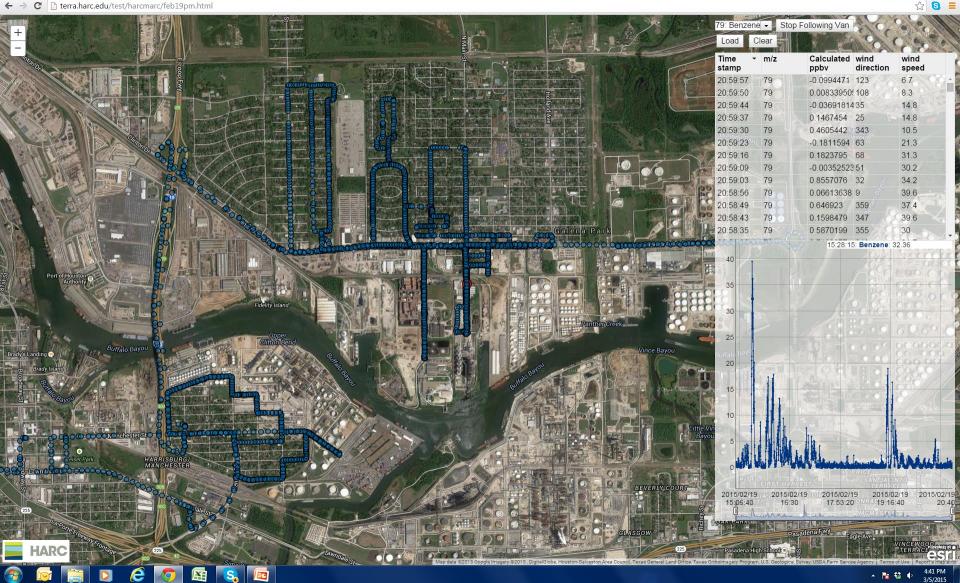
•Very high resolution (~20 s time, ~200 m horizontal).


•Uses QUIC model and LIDAR data to extrapolate wind observations.

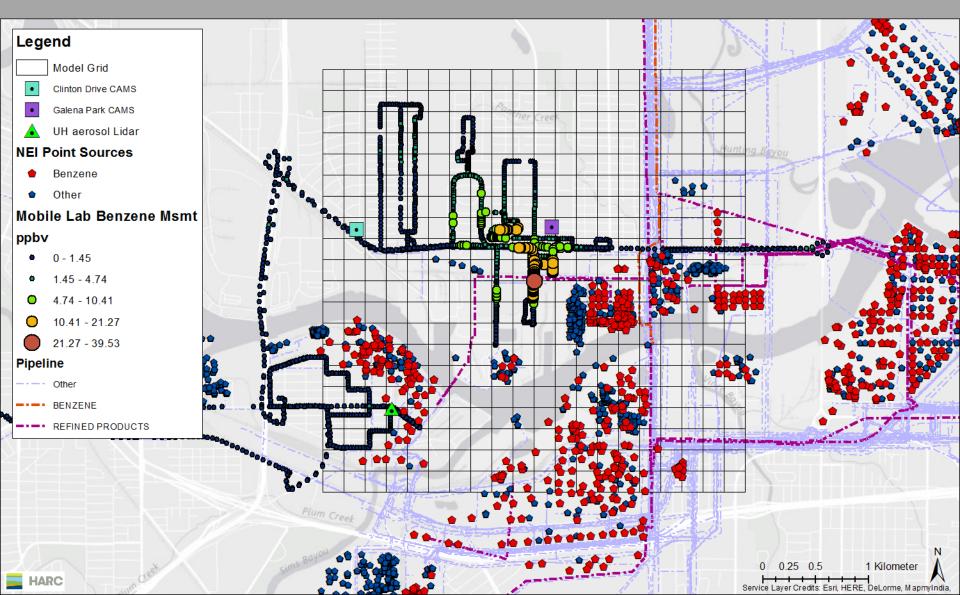
•Forward and inverse mode (adjoint method + 4Dvar).

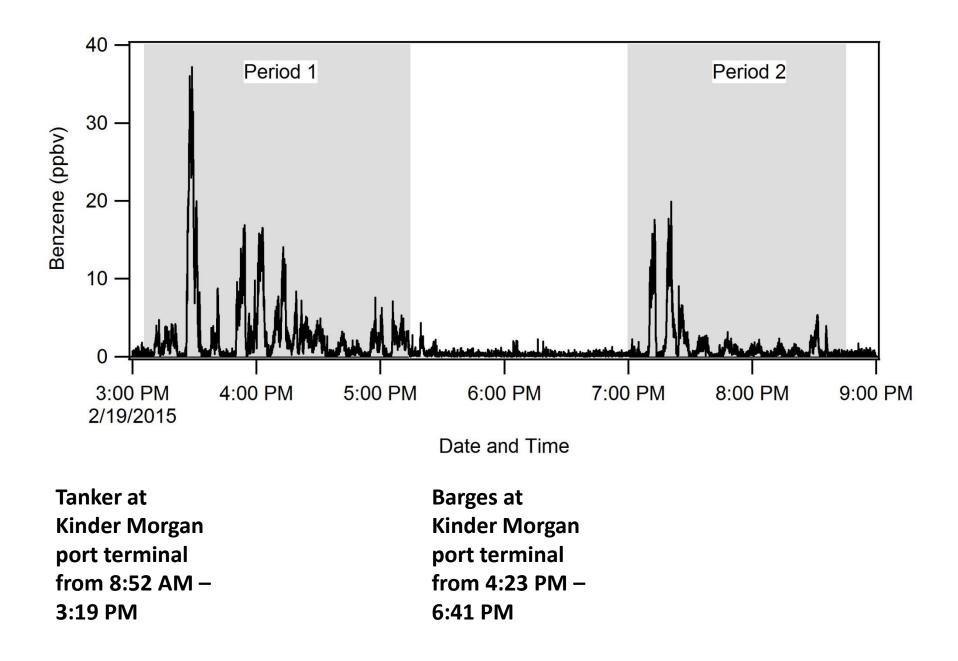
Toluene Plume, Feb 19 at ~4 am

CAT Scan

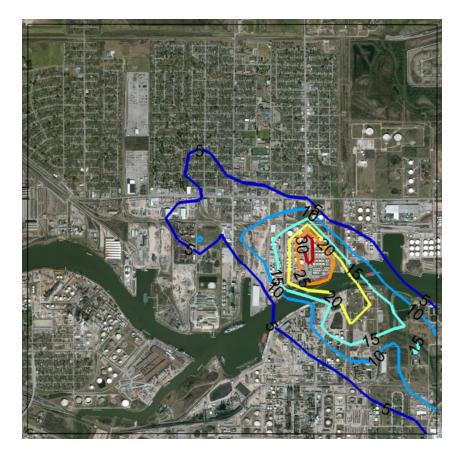

Mobile Lab-based Reconstruction

Source Attribution for Manchester ~4 am, February 19, 2015


Emission Point	Toluene Emissions (kg/hr)		Xylene Emissions (kg/hr)	
Number (EPN)	CAT	PTR-MS	CAT	PTR-MS
TRAIN	2.41	0.79	2.42	0.90
EPTTL	1.90	0.63	1.90	0.64
EPLLL	1.70	0.61	1.70	0.63
91AFUG	1.51	0.40	1.51	0.41
47AD5409	0.28	0.28	0.28	0.32
AREA	0.89	0.20	0.89	0.24
EPHLL	2.21	0	2.21	0.03


Galena Park Benzene Plume, Feb 19 pm

🗅 HARCMARC Feb 19 Revie 🗴 🎦 HARCMARC Feb 18 Revie 🗴 🛅 HARCMARC Feb 19 pm Re 🗙



Pipeline Network, Point Sources, and Mobile Lab Measurements of Benzene in Galena Park Analysis Grid

Model Plume Reconstruction for Ambient Benzene (ppbv)

15:06 - 17:14 LST (Period 1)

19:00 - 20:45 LST (Period 2)

Galena Park Benzene Source Attribution 15:06 – 17:14 LST, 2/19/2015

Emission Point Number (EPN) or Pipeline ID	Average	Average	Emissions
	UTMx (m)	UTMy (m)	(kg/hr)
8 pipeline segments with ID 56121 to 56156	283433.7	3290833	2.97
SD2 (marine loading flare), WTCR (tank truck loading flare)	284029	3290550	2.37
BD2 (marine loading flare)	284205.6	3290463	1.97
TR10 (rail car and tank truck loading flare)	284099	3290509	1.94
29 pipeline segments with ID 59697 to 61076	284433.7	3290233	1.60
104 pipeline segments with ID 57442 to 59880	284433.7	3290433	1.37
201 pipeline segments with ID 60905 to 89418	284633.7	3290033	1.31
81 pipeline segments with ID 59477 to 60990	284633.7	3290233	1.29
8 pipeline segments with ID 60935 to 70805	284433.7	3290033	1.28
1 pipeline segment with ID 62374	284833.7	3290033	1.24
3 pipeline segments with ID 56110 to 56202	283833.7	3290833	1.08
5 pipeline segments with ID 63583 to 85520	285033.7	3289833	1.08
T187-1, T80-18 (storage tank stacks)	283892.8	3290827	1.06
4 pipeline segments with ID 56101 to 57129	284033.7	3290833	1.04
2 pipeline segments with ID 56130 to 56383	283033.7	3290833	1.02

Galena Park Benzene Source Attribution 19:00 – 20:45 LST, 2/19/2015

Emission Point Number (EPN) or Pipeline ID	Average UTMx (m)	Average UTMy (m)	Emissions (kg/hr)
3 pipeline segments with ID 56110 to 56202	283833.7	3290833	0.98
6 pipeline segments with ID 56113 to 56202	283633.7	3290833	0.81
SD2 (marine loading flare), WTCR (tank truck loading flare)	284029	3290550	0.75
1 pipeline segment with ID 56130	283233.7	3290833	0.63
BD2 (marine loading flare)	284205.6	3290463	0.54
TR10 (rail car and tank truck loading flare)	284099	3290509	0.49
T25-3, T12-5, T12-1, T12-10, T12-3, T25-10, T25-15, T25-14,			
T25-17, T25-4, T25-6, T25-8, T25-7 (storage tank stacks)	284215.6	3290619	0.46
T187-1, T80-18 (storage tank stacks)	283892.8	3290827	0.43
29 pipeline segments with ID 59697 to 61076	284433.7	3290233	0.41
T12-24, T12-30, T80-20, T80-19, T12-28, T25-12, T25-13, T25-			
19, T25-18 (storage tank stacks)	284049.6	3290625	0.41
104 pipeline segments with ID 57442 to 59880	284433.7	3290433	0.40
4 pipeline segments with ID 56101 to 57129	284033.7	3290833	0.39
T12-27, T12-25, T12-29 (storage tank stacks),			
VCU1A&B (thermal oxidizer flare)	284053.7	3290491	0.37
81 pipeline segments with ID 59477 to 60990	284633.7	3290233	0.36
1 pipeline segment with ID 62374	284833.7	3290033	0.33

Galena Park Feb 19 Benzene Event Total Domain Emissions (kg/hr)

Time Period	Point Sources	Pipelines	Total Emissions
Afternoon	16.43	34.73	51.16
Evening	5.59	10.69	16.29
2011 NEI	8.27	0	8.27

Environmental Health Insights BEE-TEX Supplement

- Concentrations of 1,3-butadiene in Manchester (~0.17 ppb) exceed the EPA's E-5 lifetime cancer risk level of 0.14 ppb. (Yacovitch et al., 2015)
- Exposed lung cell mRNA was used to determine the level of expression of 249 immune-related genes and 730 pan cancer related genes.
- 11 genes showed significant differential expression when exposed to ambient pollution in comparison to clean air. (Vizuete et al., 2016)

Conclusion

- We can now monitor entire communities in real time and accurately map hot spots in ambient concentrations of air pollutants.
- We can now attribute observed hot spots of air pollutants to specific emission points at facilities, and quantify emissions in real time based on ambient measurements obtained outside the fence line.