STURGIS Barge Decommissioning Project

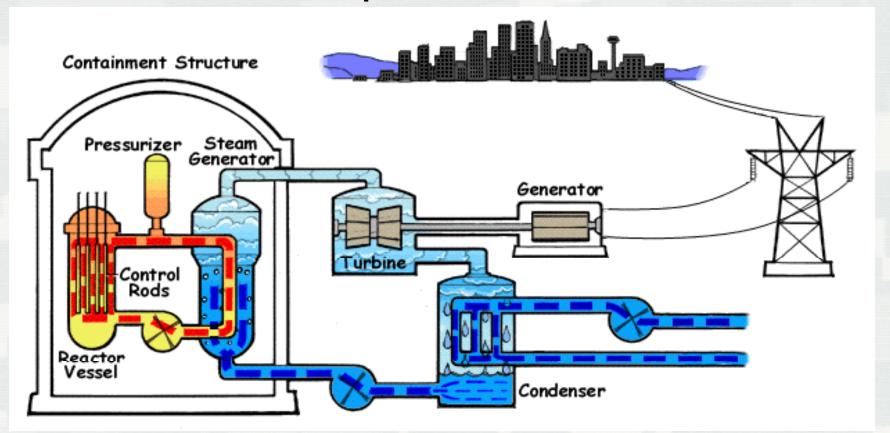
U.S. Army Corps of Engineers

Baltimore District

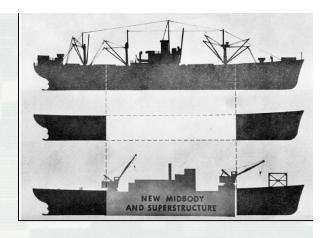
19 Feb 2015

Today's Presentation

- History of the STURGIS
- Environmental Assessment
- Decommissioning
 - ▶ Waste Segregation
 - ▶ Safety Measures
 - **▶** Oversight
 - **►** Milestones
- Questions


First Barge Mounted Nuclear Power Plant

- The former World War II Liberty Ship, SS Charles H.
 Cugle, was converted into a nuclear power plant in 1966.
- STURGIS was the first barge mounted nuclear plant to regularly supply power to a shore station.
- The STURGIS' nuclear reactor, MH-1A, was used to generate electricity for military and civilian use in the Panama Canal from 1968-1976.



Typical Pressurized Water Reactor Operations

The STURGIS is a Historic Property

Design schematic from 1959

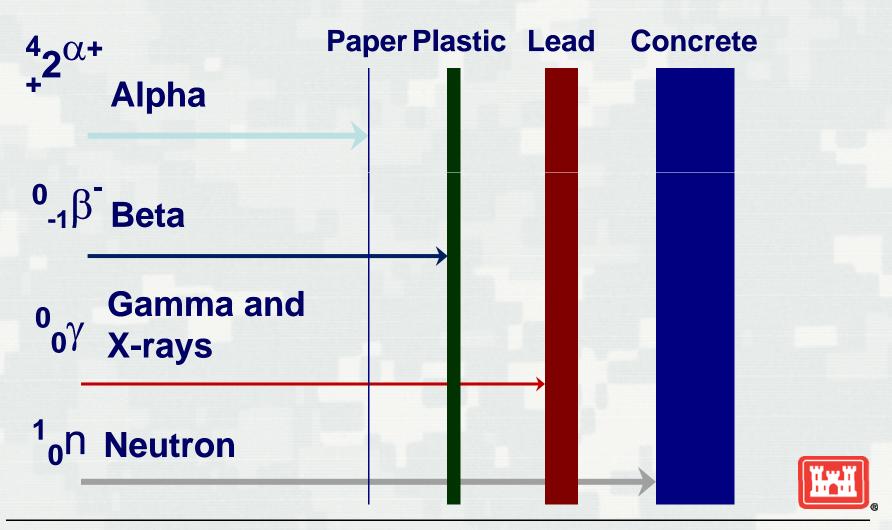
- The STURGIS is considered a historic property eligible for listing in the National Register of Historic Places.
- During decommissioning, the Corps will preserve items of historic interest, including an electronic repository of documents

Fuel Removal and Long-term Storage

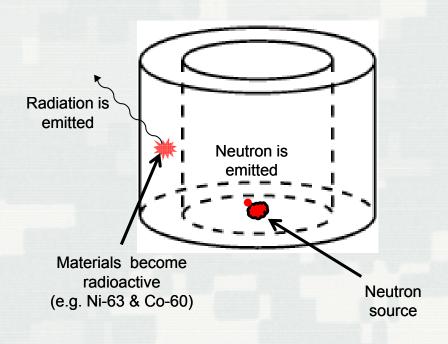
- In 1977, the STURGIS returned to Fort Belvoir where the nuclear fuel was removed, and the vessel was prepared for safe long-term storage.
- The STURGIS has been maintained in James River Reserve Fleet at Joint Base Langley-Eustis, VA since 1978.
- The Corps of Engineers has performed quarterly monitoring and periodic maintenance for the past 36 years.

Characterization Confirms Very Low Radiation Levels

- The vessel's radiological and chemical contaminants were evaluated in 2001.
- The extensive characterization confirmed that radiation levels have decayed to safer working levels.



Characterization



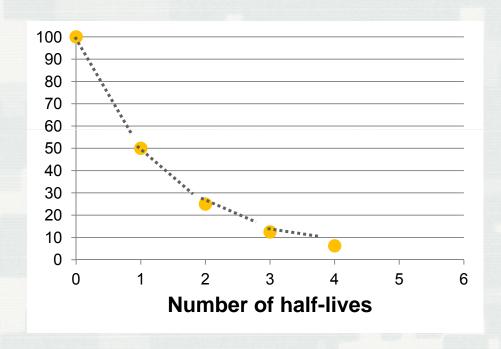
Basic Types of Ionizing Radiation

Where Did the Radioactivity Come From?

Materials become stable Co-60 > Ni-60 Ni-63 > Cu-63

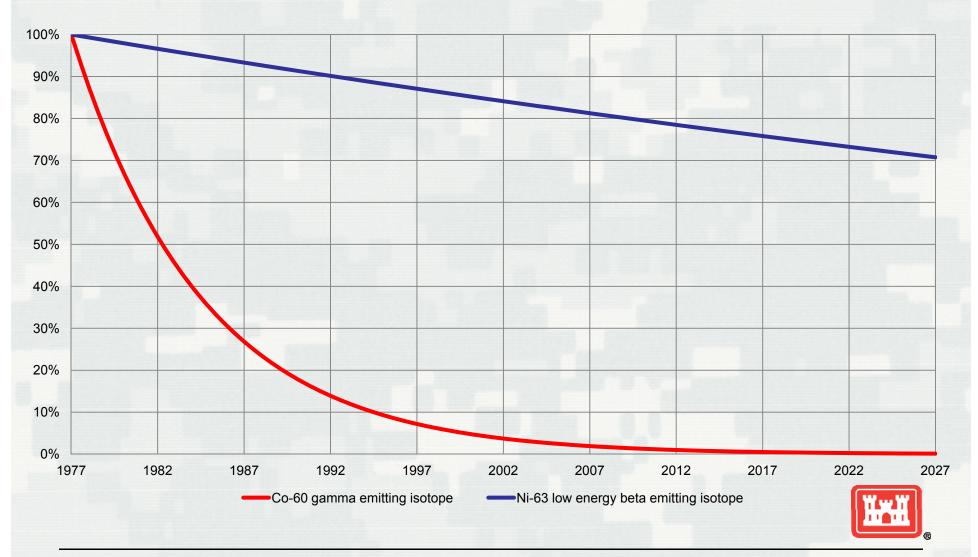
STURGIS Primary Radionuclides

- Primary radionuclides are activation products
 - ► Co-60
 - ► Ni-63
- Most of the activity is in the form of radioactive metal in the reactor pressure vessel and the primary shield tank
- Ni-63 emits low-energy beta radiation
- Co-60 emits beta and gamma radiation



Characteristics of the Important Radionuclides

Radionuclide	Abbreviation	Half-life (years)	Radiation Emitted	Percent Abundance Dec 2014
Cobalt-60	Co-60	5.27	Beta/gamma	27.05 %
Nickel-63	Ni-63	100.1	Low-energy beta	72.46%


The Half-Life of a Radionuclide

- Half life is the time it takes for 1/2 of the atoms to decay.
- The half-life of Co-60 is
 5.27 yrs.
- The half-life of Ni-63 is 100.1 yrs.

Radioactive Decay Since Shutdown

Environmental Assessment

Four Coastal Cities Were Selected for the Assessment

- Galveston, TX
- Hampton Roads, VA
- Baltimore, MD, and
- Charleston, SC

Site Selection Was Based On:

- Proximity to the Corps of Engineers' offices
- Proximity to waste disposal facilities, and
- Availability of shipyards and ship breaking operations.

An Environmental Assessment was Conducted in 2013

The purpose of an environmental assessment is to determine the potential environmental impacts associated with each selected site.

The Environmental Assessment Considered:

- Ecology, including marine mammals, essential fish habitat, benthic communities and protected species
- Cultural resources, including preservation of historical documents
- Water, including bays, estuaries and wetlands
- ▶ Air quality, including towing and decommissioning activities
- Waste management, including hazardous and radioactive waste

The Bottom Line: There are no significant impacts

 The environmental assessment concluded there are no significant environmental impacts, including impacts related to transportation.

Decommissioning

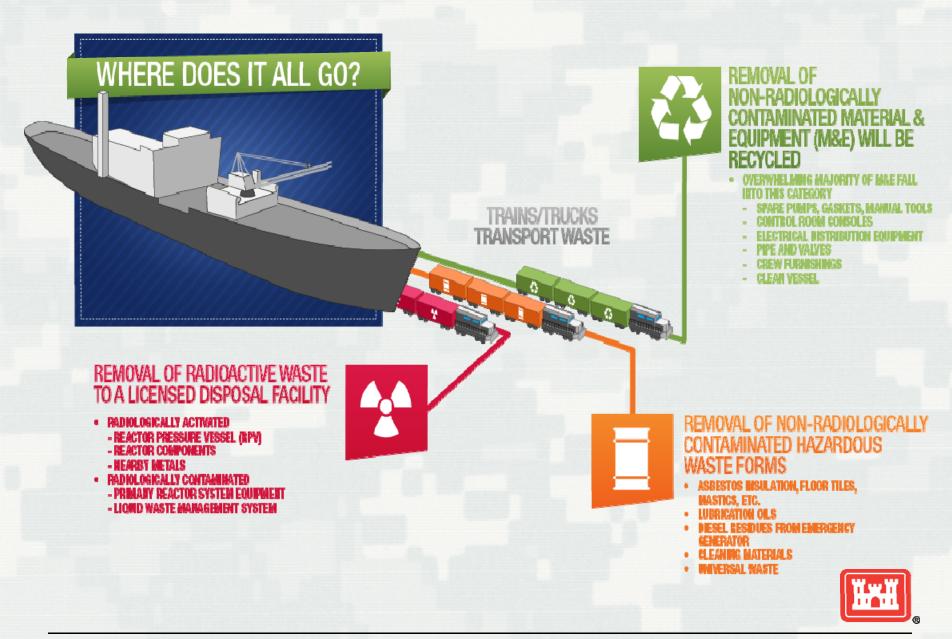
Primary Objectives

- Decommission, then dismantle the vessel.
- Remove radioactive material to permit the STURGIS to be released for unrestricted use.
- Segregate waste streams.
- Ensure wastes are disposed in licensed facilities.
- Recycle nonradioactive material.
- Terminate the Army Reactor Office permit.

Path Forward

- Inspect STURGIS prior to relocation.
- Conduct baseline radiological survey at Malin Shipyard prior to towing.
- Prepare STURGIS for towing to Malin Shipyard.
- Remove STURGIS' residual radiological and hazardous materials.

Path Forward


- All parts and contents of STURGIS and the MH 1A reactor will be disposed as
 - ► Clean (recycled/land filled) [Estimated ~90%]
 - The shipbreaking is planned to be completed in Brownsville, TX
 - ► Radioactive [Estimated ~8%]
 - ► Hazardous [Estimated ~2%]
 - ► Mixed waste (Radioactive and hazardous/ asbestos/universal) [Estimated <1%]

Towing Route

Risk Reduction and Safety

- The potential risks from radiation sources may result from
 - ► Internal exposures, or
 - ► External exposures
- Different control methods are used depending on the type of exposure

Risk Reduction and Safety

External radiation protection

- Establishing a security perimeter to control access
- Using shielding on components that have higher exposure rates
- Minimizing the time any of the higher exposure rate components are not shielded
- Using 3-D laser mapping to facilitate planning

Internal radiation protection

- Conduct activities in a contained area of the barge using proven industry standards
- Use contamination control methods such as glove bags, foaming, and fixatives
- Control air flow and emissions using HEPA filtration units

Hurricane Plan

- A detailed hurricane plan will be prepared:
 - ► Double tie the STURGIS in place and make sure it is water tight.
 - ► STURGIS will be left in the shipyard to ride out the storm.
 - ► Consistent with what Malin Shipyard has done before during previous hurricanes.

Project Team and Schedule

Contract Award

- March 2014, award of \$34.6M to CB&I to complete the STURGIS decommissioning in Galveston
- Award was based on best value considering technical approach, management, past performance, and cost factors.

Project Team

- Members of the project and oversight team include:
 - ▶ Professional Engineers
 - ► Certified Health Physicists (Radiation Safety)
 - ► Environmental Scientists
 - ► Regulatory Specialists
 - ► Safety Specialists
 - ▶ Qualified Technicians

Highly Skilled and Experienced Contractor Team

Project Management Quality Assurance Safety and Health Radiological Program Project Controls

CB&I Prime Contractor

Contract Management Procurement Decommissioning Dismantlement Engineering

EnergySolutions

Waste Management Radiological Controls Waste Certifications Waste Transport Waste Disposal Regulatory Support

Malin International

Towing Plan Naval Architect Pierside Operations

Decommissioning Facility Shipyard Labor Drydock (Submersible Barge)

EMR

Ship Breaking, Recycling, and Vessel Disposal

STUR_103_5

Federal Oversight

- U.S. Army Corps of Engineers will provide quality assurance over the contractor and their quality control program
- Corps of Engineers National Environmental Center of Expertise
- Army Reactor Office and Reactor Council
- Oak Ridge Associated Universities Independent Review

State Oversight

- Texas Commission on Environmental Quality
 - ▶ Disposal of Low level Radioactive Waste
 - ▶ Remediation of Asbestos Containing Materials
- Texas Department of State Health Services
 - ► Release of materials
 - ► Materials in transport
 - ► Licensing Asbestos workers

STURGIS Schedule

- Tow STURGIS in April 2015
- Begin decommissioning in May 2015
- Decommissioning will take 14-18 months

QUESTIONS?

USACE Baltimore District POC's

Hans Honerlah – NAB Program Manager Hans.b.honerlah@usace.army.mil 410-962-9184

Brenda Barber – NAB Project Manager Brenda.m.barber@usace.army.mil 410-962-0030

